

Seat No. _____

HAK-XVII

B. Sc. / M. Sc. (Applied Physics) (Sem. V) (CBCS) Examination May - 2023 Statistical Physics : XVII (New Course)

Time : $2\frac{1}{2}$ Hours / Total Marks : 70

Instruction :			Write answers of any five questions.	
1	(a)	Wri	te answer of following short questions :	4
		(1)	State the fundamental assumptions of statistical mechanics.	
		(2)	Define phase space.	
		(3)	Write the equation for a phase space of a three- dimension oscillator.	
		(4)	What do you mean by ensembles?	
	(b)	Wri	te about the uses of ensembles.	2
	(c)	Disc ense	cuss microcanonical, canonical and grand canonical embles.	3
	(d)	Des	cribe phase space in detail with the example of	5
		thre	e dimensional harmonic oscillators.	
2	(a)	Wri	te answer of following short questions :	4
		(1)	Write the name of parameters associated with canonical ensemble.	
		(2)	State the postulate of equal a priori probability.	
		(3)	Write statistical description or steps of systems of particles.	
		(4)	Write the condition for statistical equilibrium.	
HAK-XVII]			1 [Ce	ontd

	(b)	Derive the equation for volume in phase space	2	
		$d\pi = 2\pi \left(2m\right)^{3/2} \varepsilon^{1/2} d\varepsilon \cdot V .$		
	(c)	Derive the equations for the number of phase cell for	3	
		harmonic oscillator and three dimensional free particles. Describe mechanical equilibrium and particle equilibrium		
	(d)			
		in detail.		
3	(a)	Write answer of following short questions :		
		(1) Define microstate.		
		(2) Discuss the statistical probability.		
		(3) What is partition function?		
		(4) State the postulate of equal a priori probability.		
	(b)	Write law of general statistical distribution.	2	
	(c)	Prove: Sterling's Approximation.		
	(d)	Discuss and prove the law of equipartition of energy in brief.	5	
4	(a)	Write answer of following short questions :		
		(1) Define macrostate.		
		(2) Discuss the number of microstate accessible to a macroscopic system.		
		(3) Define thermodynamic probability.		
		(4) Write the condition for statistical equilibrium.		
	(b)	Explain law of most probable distribution.	2	
	(c)	Derive an expression for a number of states accessible to a	3	
		free particle confined in a one-dimensional box.		
	(d)	Explain connection between partition function and	5	
		thermodynamic quantities.		
5	(a)	Write answer of following short questions :	4	
		(1) What are the bosons?		
		(2) Discuss black body radiation in short.		
		(3) What are phonons?		
		(4) Draw the graph ω vs. $\rho(\omega)$ for Plank's radiation law.		

HAK-XVII]

	(b)	What was the discrepancy in Einstein's specific heat model?	2
	(c)	Explain radiation density for photon gas.	3
	(d)	Derive an equation for Bose temperature.	5
6	(a)	Write answer of following short questions :	4
		(1) What are the photons?	
		(2) Write the equation for the pressure of radiation.	
		(3) What is entropy?	
		(4) Define Specific heat.	
	(b)	What modifications were suggested by Debye in Einstein's	2
		model of specific heat?	
	(c)	Discuss three radiative processes between two energy levels.	3
	(d)	Derive Einstein equation for specific heat of solids.	5
7	(a)	Write answer of following short questions :	4
		(1) What are the Fermions?	
		(2) What is chandrasekhar mass limit?	
		(3) Probability of energy state E_f occupied by an electron at absolute temperature can be approximated	
		(4) What are white dwarfs?	
	(b)	The molar mass of Lithium is 0.00694 and its density is	2
		0.53×10^3 kg/m ³ . Calculate the Fermi of the electrons.	
	(c)	Write a note on Fermi gas in metals.	3
	(d)	Derive an equation for pressure exerted by Fermi gas in a white dwarf.	5
8	(a)	Write answer of following short questions :	4
C .	()	(1) What are the photons?	-
		(2) Draw the Hertzsprung -Russel diagram.	
		(3) Define Fermi energy.	
		(4) Give relationship between T_f and E_f	
	(b)	Derive an equation for mean energy of fermions at $T = 0$ K.	2
	(c)	Derive an equation for Fermi energy of gas using	3
	. /	Heisenberg's uncertainty principle.	
	(d)	Explain Electronic specific heat with necessary equations.	5
HAK	-XVII] 3 [Conto	l

9	(a)	Write answer of following short questions :	4
		(1) Why Bose-Einstein condensation is interesting?	
		(2) Write the equation for average number of bosons in the energy state E_s .	
		(3) What is ideal fermi system?	
		(4) Write the equation for Fermi-Dirac distribution.	
	(b)	Discuss equilibrium number of photons in the radiation	2
		cavity $(N \alpha VT^3)$.	
	(c)	Discuss Emissivity for photon.	3
	(d)	Derive an equation for compressibility of fermi gas.	5
10	(a)	Write answer of following short questions :	4
		(1) What is statistical physics?	
		(2) Write the equation for the energy of simple harmonic oscillation.	
		(3) Maxwell - Boltzmann distribution is useful fortype of system.	
		(4) What do you mean by basic postulate in statistical physics.	
	(b)	Describe the division of phase space into cells.	2
	(c)	Discuss the difference between classical and quantum statistical physics.	3
	(d)	Explain the connection between statistical and thermodynamic quantities.	5